Math 194
The Invertible Matrix Theorem (Unit 5 Version)

Let A be a square $n \times n$ matrix. Then the following statements are equivalent. That is, for a given A, the statements are either all true or all false.

1. A is an invertible matrix.
2. A is row equivalent to the $n \times n$ identity matrix.
3. A has n pivot positions.
4. A has a pivot in each column.
5. A has a pivot in each row.
6. The equation $Ax = 0$ has only the trivial solution.
7. The equation $Ax = b$ has at least one solution for each b in \mathbb{R}^n.
8. The equation $Ax = b$ has exactly one solution for each b in \mathbb{R}^n.
9. The columns of A span \mathbb{R}^n.
10. The columns of A are linearly independent.
11. The columns of A for a basis for \mathbb{R}^n.
12. The nullspace of A equals $\{0\}$.
13. The dimension of the nullspace of A is 0.
14. The column space of A is \mathbb{R}^n.
15. The dimension of the column space of A is n.
16. The row space of A is \mathbb{R}^n.
17. The dimension of the row space of A is n.
18. The rank of A is n.
19. The linear transformation $x \mapsto Ax$ is onto.
20. The linear transformation $x \mapsto Ax$ is one-to-one.
21. The determinant of A is not zero.
22. The number 0 is not an eigenvalue of A.