1. Suppose \(A = \begin{bmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \) and \(B = \begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{bmatrix} \).

(a) Let \(T \) be the transformation with standard matrix \(AB \). What 2D transformation is performed by \(T \) when it acts on the homogeneous coordinates of a point \((x, y)\)?

(b) Let \(L \) be the transformation with standard matrix \(BA \). What 2D transformation is performed by \(T \) when it acts on the homogeneous coordinates of a point \((x, y)\)?

(c) Is the transformation performed by \(T \) the same as the transformation performed by \(L \)? Justify your answer.

2. For each of the following, determine if \(v \) is an eigenvector of \(A \). If so, find the eigenvalue.

(a) \(v = \begin{bmatrix} 4 \\ 3 \\ 1 \end{bmatrix}, A = \begin{bmatrix} 3 & 7 & 9 \\ -4 & -5 & 1 \\ 2 & 4 & 4 \end{bmatrix} \)

(b) \(v = \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix}, A = \begin{bmatrix} 3 & 6 & 7 \\ 3 & 3 & 7 \\ 5 & 6 & 5 \end{bmatrix} \)

3. For each of the following, find a basis for the eigenspace corresponding to the listed eigenvalue.

(a) \(A = \begin{bmatrix} 4 & -2 \\ -3 & 9 \end{bmatrix} \), \(\lambda = 10 \)

(b) \(A = \begin{bmatrix} 4 & 2 & 3 \\ -1 & 1 & -3 \\ 2 & 4 & 9 \end{bmatrix} \), \(\lambda = 3 \)

4. Suppose the 2 \(\times \) 2 matrix \(A \) has an eigenvalue \(\lambda = -1 \) with associated eigenvector \(x = \begin{bmatrix} 3 \\ 4 \end{bmatrix} \). What is \(A^{45}x \)?

5. Let \(A \) be the standard matrix for the linear transformation that reflects vectors in \(\mathbb{R}^2 \) across the line \(2x_2 = 3x_1 \). Without finding the matrix \(A \), find both eigenvalues of \(A \) and describe their eigenspaces.