Math 194
Clicker Questions

Unit 1: Systems of Linear Equations

1. Suppose you have a system of linear equations consisting of three equations in two unknowns. How many solutions are possible for such a system? Mark all that apply.
 (a) No solutions.
 (b) Exactly one solution.
 (c) Infinitely many solutions.

2. Consider the following system of linear equations.
 \[
 \begin{align*}
 x + 3y + z &= 3 \\
 2x + 2y + 4z &= -4 \\
 3x + y - z &= 9
 \end{align*}
 \]
 The corresponding augmented matrix is
 \[
 \begin{bmatrix}
 1 & 3 & 1 & 3 \\
 2 & 2 & 4 & -4 \\
 3 & 1 & -1 & 9
 \end{bmatrix}.
 \]
 Which of the following augmented matrices correspond to a system of linear equations with the same solution set? Mark all that apply.
 (a) Multiply the first row by 2:
 \[
 \begin{bmatrix}
 2 & 6 & 2 & 6 \\
 2 & 2 & 4 & -4 \\
 3 & 1 & -1 & 9
 \end{bmatrix}
 \]
 (b) Multiply the first column by 2:
 \[
 \begin{bmatrix}
 2 & 3 & 1 & 3 \\
 4 & 2 & 4 & -4 \\
 6 & 1 & -1 & 9
 \end{bmatrix}
 \]
 (c) Add the first row to the third row:
 \[
 \begin{bmatrix}
 1 & 3 & 1 & 3 \\
 2 & 2 & 4 & -4 \\
 4 & 4 & 0 & 12
 \end{bmatrix}
 \]
 (d) Interchange the first and second rows:
 \[
 \begin{bmatrix}
 2 & 2 & 4 & -4 \\
 1 & 3 & 1 & 3 \\
 3 & 1 & -1 & 9
 \end{bmatrix}
 \]
 (e) Interchange the first and second columns:
 \[
 \begin{bmatrix}
 3 & 1 & 1 & 3 \\
 2 & 2 & 4 & -4 \\
 1 & 3 & -1 & 9
 \end{bmatrix}
 \]
3. Suppose the augmented matrix for a system of three linear equations in four unknowns has three pivot columns. True or False: The system must be consistent.

4. Suppose the augmented matrix for a system of three linear equations in three unknowns has a pivot in each of the first three columns. True or False: The system has exactly one solution.

5. Suppose you row-reduce the augmented matrix for a system of four linear equations in three unknowns and end up with a row of all zeros. How many solutions does the system have? *Mark all that are possible.*
 (a) No solutions
 (b) Exactly one solution
 (c) Infinitely many solutions

6. Let \(\mathbf{v}_1 = \begin{bmatrix} 1 \\ 4 \end{bmatrix} \) and \(\mathbf{v}_2 = \begin{bmatrix} 2 \\ 3 \end{bmatrix} \). Geometrically, what is the set of all linear combinations of \(\{\mathbf{v}_1, \mathbf{v}_2\} \)?
 (a) A point
 (b) A line
 (c) All of \(\mathbb{R}^2 \)

7. Let \(\mathbf{v}_1 = \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix} \), \(\mathbf{v}_2 = \begin{bmatrix} 3 \\ 0 \\ -1 \end{bmatrix} \), and \(\mathbf{v}_3 = \begin{bmatrix} 6 \\ 0 \\ -2 \end{bmatrix} \). Which of the following is *not* a linear combination of \(\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\} \)?
 (a) \(\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \)
 (b) \(\begin{bmatrix} 4 \\ 1 \\ 1 \end{bmatrix} \)
 (c) \(\begin{bmatrix} 3 \\ 3 \\ 6 \end{bmatrix} \)
 (d) All of these are linear combinations of \(\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\} \).

8. Let \(\mathbf{v}_1 = \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix} \), \(\mathbf{v}_2 = \begin{bmatrix} 3 \\ 0 \\ -1 \end{bmatrix} \), and \(\mathbf{v}_3 = \begin{bmatrix} 6 \\ 0 \\ -2 \end{bmatrix} \). Geometrically, what is the set of all linear combinations of \(\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\} \)?
 (a) A point
 (b) A line
 (c) A plane
 (d) All of \(\mathbb{R}^3 \)

9. Let \(\mathbf{v}_1 = \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix} \), \(\mathbf{v}_2 = \begin{bmatrix} 3 \\ 0 \\ -1 \end{bmatrix} \), \(\mathbf{v}_3 = \begin{bmatrix} 6 \\ 0 \\ -2 \end{bmatrix} \). Which of the following sets has the same span as the set of all three vectors \(\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\} \)? *Mark all that apply.*
 (a) \(\{\mathbf{v}_1, \mathbf{v}_2\} \)
 (b) \(\{\mathbf{v}_2, \mathbf{v}_3\} \)
10. Let \(\mathbf{v}_1 = \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix}, \mathbf{v}_2 = \begin{bmatrix} 3 \\ 0 \\ -1 \end{bmatrix}, \text{ and } \mathbf{v}_3 = \begin{bmatrix} -1 \\ 2 \\ 5 \end{bmatrix} \). Geometrically, what is the subspace spanned by \(\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\} \)?

(a) A point
(b) A line
(c) A plane
(d) All of \(\mathbb{R}^3 \)

11. **Theorem:** Let \(A \) be an \(m \times n \) matrix. Then the following statements are logically equivalent. That is, for a particular \(A \), either they are all true statements or they are all false statements.

(a) For each \(\mathbf{b} \) in \(\mathbb{R}^m \), the equation \(A\mathbf{x} = \mathbf{b} \) has a solution.
(b) Each \(\mathbf{b} \) in \(\mathbb{R}^m \) is a linear combination of the columns of \(A \).
(c) The columns of \(A \) span \(\mathbb{R}^m \).
(d) \(A \) has a pivot position on every row.

If the four statements in this theorem are all true, what does that imply about the relative size of \(m \) and \(n \)?

(a) \(m \geq n \)
(b) \(m \leq n \)
(c) \(m = n \)
(d) Nothing. \(m \) and \(n \) can be any positive integers.

12. Let \(A = \begin{bmatrix} 4 & 7 & 2 \\ -1 & 0 & 8 \\ 3 & 5 & 1 \end{bmatrix} \). The entry \(a_{2,3} \) is which of the following?

(a) 0
(b) 1
(c) 8
(d) 5

13. Let \(A = \begin{bmatrix} 4 & 7 & 2 \\ -1 & 0 & 8 \\ 3 & 5 & 1 \end{bmatrix} \). Which of the following is equal to \(a_2 \)?

(a) \(\begin{bmatrix} -1 & 0 & 8 \end{bmatrix} \)
(b) \(\begin{bmatrix} 7 \\ 0 \\ 5 \end{bmatrix} \)
(c) 0
(d) -1

14. Let \(A = \begin{bmatrix} 2 & 3 \\ 1 & 4 \end{bmatrix} \). Which of the following is equal to \(5A \)?

(a) \(\begin{bmatrix} 10 & 3 \\ 1 & 4 \end{bmatrix} \)
15. Let \(B = \begin{bmatrix} 4 & -1 & 7 \\ 0 & 3 & 5 \end{bmatrix} \). Which of the following is equal to \(B^T \)?

(a) \(\begin{bmatrix} 4 & 7 \\ -1 & 0 \end{bmatrix} \)
(b) \(\begin{bmatrix} 7 & 0 \\ -1 & 3 \\ 0 & 5 \end{bmatrix} \)
(c) \(\begin{bmatrix} -1 & 5 \\ 0 & 4 \\ 3 & 7 \end{bmatrix} \)
(d) \(B^T \) cannot be computed.

16. Let \(A = \begin{bmatrix} 2 & 3 \\ 1 & 4 \end{bmatrix} \) and \(B = \begin{bmatrix} -1 & 7 \\ 0 & 2 \end{bmatrix} \). Which of the following is equal to \(AB \)?

(a) \(\begin{bmatrix} -2 & 21 \\ 0 & 8 \end{bmatrix} \)
(b) \(\begin{bmatrix} -2 & 20 \\ -1 & 15 \end{bmatrix} \)
(c) \(\begin{bmatrix} 5 & 25 \\ 2 & 8 \end{bmatrix} \)
(d) \(AB \) cannot be computed.

17. If \(A = \begin{bmatrix} 2 & 3 \\ 1 & 4 \end{bmatrix} \), \(B = \begin{bmatrix} 1 & 0 & 7 \\ 2 & 6 & 4 \end{bmatrix} \), and \(C = \begin{bmatrix} 9 & 8 & 7 \\ 6 & 5 & 4 \\ 3 & 2 & 1 \end{bmatrix} \), then which of the following can be computed?

(Mark all that apply.)

(a) \(AB \)
(b) \(BA \)
(c) \(BC \)
(d) \(CB \)
(e) \(AC \)

18. If \(A \) is an \(m \times n \) matrix and \(B \) is an \(n \times p \) matrix, then \(A\mathbf{b}_1 \) is described by which of the following?

(a) The first row of \(AB \)
(b) The first column of \(AB \)
(c) The 1, 1-entry of \(AB \)
(d) The first row of \(BA \)

19. Suppose you have a simple board game called Quad that consists of four spaces, A, B, C, and D. Movement is as follows:
(a) If you’re on space A, you have a 50% chance of moving to space B and a 50% chance of staying on space A.
(b) If you’re on space B, you have a 50% chance of moving to space A and a 50% chance of staying on space B.
(c) If you’re on space C, you have a 30% chance of moving to space D and a 70% chance of staying on space C.
(d) If you’re on space D, you have a 30% chance of moving to space C and a 70% chance of staying on space D.

Is the transition matrix P for this system regular? That is, is there some positive integer power k such that P^k has all positive entries?

(a) Yes
(b) No

20. True or False: If A and B are square matrices with the same dimensions, then $(A + B)(B + A) = A^2 + 2AB + B^2$.

(a) True
(b) False
Answers:

1. (a), (b), and (c)
2. (a), (c), and (d)
3. False
4. True
5. (a), (b), and (c)
6. (c)
7. (a)
8. (c)
9. (a) and (c)
10. (c)
11. (b)
12. (c)
13. (b)
14. (c)
15. (a)
16. (b)
17. (a) and (c)
18. (b)
19. No
20. False