Math 1111 – Problem Set 5

1. On a certain multiple-choice exam, there are five questions, each with four choices. Bubba has not studied for the exam at all and decides to guess answers at random. What is the probability that...
 a. The first question he gets right is the 5th question?
 b. He gets all questions right?
 c. He gets at least one question right?
 d. He gets exactly three questions right?
 e. He gets at least three questions right?

2. After becoming suspicious that the Twitter account @everycolorbot is using least significant bit steganography to hide messages in its tweets, you pull up the eight most recent RGB colors posted by the account:

 #6afe87 #d5fd0f #aafa1e #57f43c #aee879 #5ed0f2 #bea1e5 #7f43ca

 If your hunch is correct, and if @everycolorbot is using the red channel to encode its secret messages, what letter is encoded in these eight colors?

3. Suppose you’re given the following cipher: 15-17-22-11-1-22-24-31. You find a clue that leads you to believe these numbers are given in some base other than the usual base 10. Find the plaintext for this cipher.¹

4. Suppose x is a two-digit positive integer when represented in decimal form. How many digits could x have...
 a. When represented in binary form?
 b. When represented in base-3?
 c. When represented in hexadecimal (base-16)?

5. In class, we considered how to encrypt the plaintext “HELLO” using the key 541. First, we converted “HELLO” to ASCII, then to binary. Then, we converted the key, 541, to binary. Then, we wrote out the plaintext in binary alongside the key, repeated as many times as necessary. Then, we added corresponding digits using mod-2 arithmetic, as shown:

 | Plaintext | 1001000 1000101 1001100 1001100 1001111 |

¹ This problem was adapted from The Beekeeper’s Apprentice by Laurie R. King. In this novel, Sherlock Holmes takes on a 15-year-old girl as his apprentice in his retirement years.
Key 1000011 1011000 0111011 0000111 0110000
Ciphertext 0001011 0011101 1110111 1001011 1111111

a. What do you get when you “add” the ciphertext to the key—adding corresponding digits using mod-2 arithmetic?

b. Decrypt the following ciphertext, using the same encryption method and key (541) as above. (You’ll need to find an ASCII table online to finish your decryption.)

0000111 0010001 1111101 1000001 1111001 0110011

6. Consider the integers 4025 and 1242.
 a. Use the Euclidean Algorithm to find the greatest common divisor of 4025 and 1242.
 b. Use your work from part (a) to find integers s and t such that $4025s + 1242t = \gcd(4025, 1242)$.

7. Suppose Bob is sending a message to Alice using the RSA encryption process detailed in the “From Bob to Alice” handout. Let $p = 7$, $q = 11$, and $e = 49$. Find a value for d as described in Step 4 using the Euclidean algorithm.

8. Consider the set of integers $S = \{1, 2, \ldots, n-1\}$, where n is a positive integer. Define the operation \square on this set as follows: If a and b are integers in the set S, then $a \square b = (ab) \text{ MOD } n$.

 Note that this operation is closed (that is, if a and b are in S, then $a \square b$ is also in S), associative (that is, $a \square (b \square c) = (a \square b) \square c$, for any a, b, and c in S), and has an identity (1). If we can show that every element in S has an inverse under this operation, then S (along with this operation) satisfies the conditions to be a group.

 Argue that if n is prime, then S is a group.

 Hint: Use one of the theorems from our discussion of the RSA algorithm. And make use of the fact that $(a \text{ MOD } n) (b \text{ MOD } n) = (ab) \text{ MOD } n$.