Math 1111 Fall 2015 – Problem Set 5

1. Find the decimal representation of each of the following binary numbers. (Spaces added for readability.)
 a. 1 011
 b. 100 000
 c. 101 101 101
 d. 111 000 000 001

2. Find the binary representation of each of the following decimal numbers.
 a. 78
 b. 128
 c. 300
 d. 513

3. Suppose you’re given the following cipher: 15-17-22-11-1-22-24-31. You find a clue that leads you to believe these numbers are given in some base other than the usual base 10. Find the plaintext for this cipher.¹

4. Suppose x is a two-digit positive integer when represented in decimal form. How many digits could x have...
 a. When represented in binary form?
 b. When represented in base-3?
 c. When represented in hexadecimal (base-16)?

5. In class, we considered how to encrypt the plaintext “HELLO” using the key 541. First, we converted “HELLO” to ASCII, then to binary. Then, we converted the key, 541, to binary. Then, we wrote out the plaintext in binary alongside the key, repeated as many times as necessary. Then, we added corresponding digits using mod-2 arithmetic, as shown:

 | Plaintext | 1001000 1000101 1001100 1001100 1001111 |
 | Key | 1000011 1011000 0111011 0000111 0110000 |
 | Ciphertext| 0001011 0011101 1110111 1001011 111111 |

 a. What do you get when you “add” the ciphertext to the key—adding corresponding digits using mod-2 arithmetic?

¹This problem was adapted from The Beekeeper’s Apprentice by Laurie R. King. In this novel, Sherlock Holmes takes on a 15-year-old girl as his apprentice in his retirement years.
b. Decrypt the following ciphertext, using the same encryption method and key (541) as above. (You’ll need to find an ASCII table online to finish your decryption.)

```
0000111 0010001 1111101 1000001 1111001 0110011
```

6. Consider the integers 4025 and 1242.
 a. Use the Euclidean Algorithm to find the greatest common divisor of 4025 and 1242.
 b. Use your work from part (a) to find integers s and t such that $4025s + 1242t = \gcd(4025, 1242)$.

7. Suppose Bob is sending a message to Alice using the RSA encryption process detailed in the “From Bob to Alice” handout. Let $p = 7$, $q = 11$, and $e = 49$. Find a value for d as described in Step 4 using the Euclidean algorithm.

8. Consider the set of integers $S = \{1, 2, \ldots, n-1\}$, where n is a positive integer. Define the operation \square on this set as follows: If a and b are integers in the set S, then
 \[a \square b = (ab) \mod n. \]

 Note that this operation is closed (that is, if a and b are in S, then $a \square b$ is also in S), associative (that is, $a \square (b \square c) = (a \square b) \square c$, for any a, b, and c in S), and has an identity (1). If we can show that every element in S has an inverse under this operation, then S (along with this operation) satisfies the conditions to be a group.

 Argue that if n is prime, then S is a group.

 (Hint: Use one of the theorems from our discussion of the RSA algorithm.)