Math 216 Spring 2012
Problem Set 6 Answer Key

1. (a) Assume $p=0.5$, since this will give us the maximum SE possible. We have

$$
\begin{aligned}
& 0.05=z^{*} \sqrt{\frac{p(1-p)}{n}} \\
& 0.05=2.33 \sqrt{\frac{0.25}{n}}
\end{aligned}
$$

Solve for n : $n=542.89$, so we must take a sample of at least 543 observations.
(b) $n=200, \hat{p}=30 / 200=0.15$

$$
\begin{aligned}
\text { Confidence Interval } & =\hat{p} \pm z^{*} \mathrm{SE}_{\hat{p}} \\
& =\hat{p} \pm z^{*} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}} \\
& =0.15 \pm 2.33 \sqrt{\frac{.15(.85)}{200}} \\
& =0.15 \pm 0.0588 \\
& =(\mathbf{0 . 0 9 1 2}, \mathbf{0 . 2 0 8 8})
\end{aligned}
$$

2. $n=52, \hat{p}=0.9$

Width of new confidence interval is

$$
2\left(z^{*} \mathrm{SE}_{\hat{p}}\right)=2(1.96) \sqrt{\frac{.9(.1)}{52}}=2(0.0815)=\mathbf{0 . 1 6 3}
$$

Width of the original confidence interval was $0.557-0.299=\mathbf{0 . 2 5 8}$, so the new confidence interval is narrower. There is (apparently) less variance in the population if the sample proportion is 0.9 , so our estimate is more precise.
3. We are given: $n=986$, and margin of error $=0.03$. We want to find the confidence level.

$$
\begin{aligned}
\mathrm{ME} & =z^{*} \frac{0.5}{\sqrt{n}} \\
0.3 & =z^{*} \frac{0.5}{\sqrt{986}}
\end{aligned}
$$

Solve: $z^{*} \approx 1.88$
$P(-1.88 \leq z \leq 1.88)=\mathbf{9 4} \%$ confidence level.
4. $H_{0}: p=0.3$
$H_{A}: p<0.3$

$$
\begin{aligned}
p \text {-value } & =P(\hat{p}<0.267 \mid p=0.3) \\
& =\left(z<\frac{0.267-0.3}{\sqrt{0.3(0.7) / 300}}\right) \\
& =P(z<-1.247)=\mathbf{0 . 1 0 5 6}
\end{aligned}
$$

If his "true" batting average is 0.300 , he would still have a proportion of hits to at-bats this lousy 10.56% of the time. We don't have strong evidence that his true batting average is less than 0.3.
5. $p_{1}=$ proportion of small cars that would be totaled
$p_{2}=$ proportion of large cars that would be totaled
$\hat{p_{1}}=\frac{16}{24} \approx .667$
$\hat{p_{2}}=\frac{10}{30} \approx .333$
$\hat{p_{1}}-\hat{p_{2}} \approx 0.333$
Hypothesis test
$H_{0}: p_{1}-p_{2}=0$
$H_{A}: p_{1}-p_{2} \neq 0$

$$
\begin{aligned}
p \text {-value } & =P\left(\hat{p_{1}}-\hat{p_{2}} \geq 0.333 \text { or } \hat{p_{1}}-\hat{p_{2}} \leq-0.333 \mid p_{1}=p_{2}\right) \\
& =2 P\left(z \leq \frac{-.333}{\mathrm{SE}}\right)
\end{aligned}
$$

SE calculation:

$$
\begin{gathered}
\hat{p}=\frac{16+10}{54} \approx 0.481 \\
\mathrm{SE}=\sqrt{\frac{0.481(.519)}{24}+\frac{.481(.519)}{30}}=0.1368
\end{gathered}
$$

So we have

$$
\begin{aligned}
p \text {-value } & =2 P\left(z \leq \frac{-.333}{.1368}\right) \\
& =2 P(z \leq-2.43) \\
& =2(.0075)=.015
\end{aligned}
$$

We can reject H_{0} and conclude that $p_{1} \neq p_{2}$.
6. (a) $H_{0}: \mu_{2}-\mu_{1}=0$
$H_{A}: \mu_{2}-\mu_{1}>0$

$$
\begin{aligned}
p \text {-value } & =P\left(\overline{x_{2}}-\overline{x_{1}}>321-290 \mid \mu_{1}=\mu_{2}\right) \\
& =P\left(z>\frac{31-0}{\mathrm{SE}_{\overline{x_{2}}-\overline{x_{1}}}}\right) \\
& =P\left(z>\frac{31-0}{\sqrt{\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}^{2}}{n_{2}}}}\right) \\
& =P\left(z>\frac{31}{1.772}\right) \\
& =P(z>17.49) \approx \mathbf{0}
\end{aligned}
$$

We can reject H_{0} and conclude that, yes, supplier 2 provides gears with higher mean impact strength.
(b) $H_{0}: \mu_{2}-\mu_{1}=25$
$H_{A}: \mu_{2}-\mu_{1}>25$

$$
\begin{aligned}
p \text {-value } & =P\left(\overline{x_{2}}-\overline{x_{1}}>31 \mid \mu_{2}-\mu_{1}=25\right) \\
& =P\left(z>\frac{31-25}{1.772}\right) \\
& =P(z>3.38)=\mathbf{0 . 0 0 0 4}
\end{aligned}
$$

We can reject H_{0} and conclude that, yes, the mean impact strength of gears from supplier 2 is at least 25 foot-pounds higher than that of gears from supplier 1.
(c) Confidence Interval: $\overline{x_{2}}-\overline{x_{1}} \pm z^{*} \mathrm{SE}_{\overline{x_{2}}-\overline{x_{1}}}$

$$
\begin{aligned}
& 95 \% \text { confidence: } 31 \pm 1.96(1.772)=31 \pm 3.47=(\mathbf{2 7 . 5 3}, \mathbf{3 4 . 4 7}) \\
& 99 \% \text { confidence: } \\
& 31 \pm 2.57(1.772)=31 \pm 4.55=(\mathbf{2 6 . 4 5}, \mathbf{3 5 . 5 5})
\end{aligned}
$$

7. Let
$\mu_{1}=$ average audience score
$\mu_{2}=$ average critics score
$\mu_{\text {diff }}=\mu_{1}-\mu_{2}$

$$
\begin{array}{ll}
\bar{x}_{1}=53.918 & s_{1}=26.99 \\
\bar{x}_{2}=62.192 & s_{2}=17.05 \\
\bar{x}_{\text {diff }}=8.274 & s_{\text {diff }}=16.257 \quad n_{\text {diff }}=146
\end{array}
$$

$$
\text { From R-studio or Excel: } \quad \bar{x}_{2}=62.192 \quad s_{2}=17.05
$$

Hypothesis test :
$H_{0}: \mu_{\text {diff }}=0$
$H_{A}: \mu_{\text {diff }}>0$

$$
\begin{aligned}
p \text {-value } & =P\left(\bar{x}_{\text {diff }}>8.274 \mid \mu_{\text {diff }}=0\right) \\
& =P\left(z>\frac{8.274-0}{16.257 / \sqrt{146}}\right) \\
& =P(z>6.15) \approx \mathbf{0}
\end{aligned}
$$

Therefore we can reject H_{0} and conclude that, yes, the average audience score is greater than the average critics score.

